(3)分析所有SKU,以利润大化为目标来定价和清理库存。(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息!(5)从大量客户中快速识别出客户。(6)使用点击流分析和数据挖掘来规避欺诈行为随着云时代的来临,大数据(Bigdata)也吸引了越来越多的关注。分析师团队认为,大数据(Bigdata)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和钱!
换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分!大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘.但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物!
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分.据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%.[6]大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值.
客户大数据营销产品
[10]阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是DataTechnology数据科技,显示大数据对于阿里巴巴集团来说举足轻重![11]有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样!与此类似,大数据并不在“大”,而在于“有用”!价值含量、挖掘成本比数量更为重要.对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键!
”这确实是需要警惕的!在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点!企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。
对于“大数据”(Bigdata)研究机构Gartner给出了这样的定义!“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产!麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征.大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理.