不同于熔焊将两个焊接件结合处同时融化而实现连接的方式,钎焊是在焊件结合面内添加熔点比母材低的填充材料,在低于母材熔点高于填充材料熔点的温度下将填充材料熔化填满焊件间隙,然后冷凝形成牢固焊缝。钎焊适用于热敏感的微电子器件、薄板以及易挥发的金属材料!进一步地,可以根据加热钎料的温度进一步划分为软钎焊(<450℃)和硬钎焊(>450℃).双光束焊接可以灵活方便地控制激光照射时间和位置,从而调整能量分布.主要用于铝、镁合金激光焊接,汽车用拼板、搭接板焊接,激光钎焊和深熔焊等!
根据焊接模式机理不同,按照是否有匙孔的产生,一般分为激光热导焊和激光深熔焊两种,由于匙孔的存在,激光束在照射到匙孔内部后,经过散射等作用,会增加材料对激光的吸收,促进熔池的形成,两种焊接方式对比如下:上图给出了同种材料、同一光源的激光焊接过程,其能量转换机制只是通过匙孔完成的,匙孔以及孔壁附近的熔融金属随着激光束的前进而移动,熔融金属将匙孔移开后留下的空气填充并经过冷凝,形成焊缝!如果待焊材料是异种金属,由于热物性差异的存在会对焊接过程产生很大的影响,如不同材料的熔点、热导率、比热容、膨胀系数的差异,造成焊接过程产生焊接应力、焊接变形,以及焊接接头金属结晶条件变化,造成焊接力学性能下降!
因此根据不同特点的焊接场景,焊接工艺又陆续发展出激光填丝焊接、激光钎焊、双光束激光焊接、激光复合焊接等!在铝、钛以及铜合金的激光焊接过程中,由于这些材料对激光的低吸收率(10%),光致等离子体对激光有一定的屏蔽,因此容易形成飞溅,并导致气孔、裂纹等缺陷的产生!此外,在薄板拼焊时工件的间隙大于光斑直径时也会影响焊接质量。激光焊接的作用区域小,容易造成焊接端口错位,而电弧的热作用范围大,可以减小焊接端口的错位.
我们推荐揭秘激光焊接
双光束可以通过两台不一样的激光器获得,也可以用分光镜分光获得!两束激光可以是不同时域特性(脉冲与连续)、不同波长(中红外与可见光波段)、不同功率的激光的组合,可以根据实际加工材料选取!由于只采用激光束作为热源,单热源激光焊接具有能量转换率和利用率低、焊接母材端口接口容易产生错位、易产生气孔和裂纹等缺点,为解决这一问题,可以利用其他热源的加热特性来改善激光对工件的加热,通常称之为激光复合焊接.激光复合焊接的主要形式为激光与电弧的复合焊接,11>2的效果具体表现如下:在激光束附近外加电弧后,电子密度显著降低,由激光焊接产生的等离子体云得到稀释,能使激光吸收率大大提高,同时电弧对母材的预热也会进一步增加激光的吸收率;.
高品质揭秘激光焊接
但是,任何加工方式如果没有掌握好其原理和工艺,都会产生一定的缺陷或不良品,激光焊接也不例外!只有很好地了解这些缺陷,并学会如何避免产生这些缺陷,才能更好地发挥激光焊接的价值,加工出外观精美、品质优良的产品.激光连续焊接中产生的裂纹主要是热裂纹,如结晶裂纹、液化裂纹等,产生的原因主要是焊缝在完全凝固之前产生较大的收缩力而造成的,填丝、预热等措施可以减少或消除裂纹!气孔是激光焊接中较容易产生的缺陷!激光焊的熔池深而窄,冷却速度又很快,液态熔池中产生的气体没有足够的时间逸出,容易导致气孔的形成.
同时,由于激光束对电弧的聚焦、引导作用,电弧的焊接质量和效率也得到了提高;激光焊接时峰值温度高、热影响区大,冷却凝固速度快,容易产生裂纹和气孔;而电弧的热作用影响区小,可以使温度梯度减小,冷却、凝固速度降低,可以减小和消除气孔和裂纹的生成.凭着效率高、精度高、效果好、易于自动化集成等优势,激光焊接被广泛应用于各个行业,在工业生产制造中扮演着举足轻重的角色,包括在军事、医疗、航天、3C汽配、机械钣金、新能源、卫浴五金等行业。