阻尼器与活塞的运动速度有关粘性阻尼器:它是一种与活塞运动速度相关的阻尼器!广泛应用于高层建筑、桥梁、建筑结构地震改造、工业管道设备抗振动、军//工等领域!传统的结构抗(振动)冲击是通过增强结构本身的抗(振动)冲击性能(强度、刚度、延性)来抵抗地震、风、雪、海啸等自然灾害.由于自然灾害的作用强度和特性的不确定性,传统的抗(振动)冲击方法设计的结构不具备自我调节能力!因此,当地震来临时,往往会造成重大的经济损失和人员伤亡!
通过对建筑物的非线性时间分析,比较大限度地减少了层间位移角,甚至考虑了初始成本和总体预期损失的目标,优化了比较高的附加阻尼比.提高粘性阻尼器组件性能的方法:随着阻尼器变形的增加,阻尼器的能量耗散能力增加,阻尼器的变形通常受到结构层间位移角的限制。为了在不降低结构承载力的情况下使阻尼器变形尽可能大,因此可以增加粘性阻尼器内部的阻尼变形,打破现有层间变形的限制。换句话说,放大系统用于放大地板变形,使阻尼器获得更大的冲程(或速度),并为结构提供更高的等效阻尼比,从而更有效地保护结构!
粘滞阻尼器
其工作模式是通过活塞的往复运动,液体通过活塞头上的小孔流动,从而提供阻尼力。除上述单杆粘度阻尼器外,还有粘度阻尼墙和三向气缸粘度阻尼器.前两个阻尼器已广泛应用于建筑结构的振动控制中,而三向气缸粘度阻尼器主要用于管道系统的振动控制。近年来,粘滞阻尼器的研究主要是优化粘滞阻尼器的空间分布,提高粘滞阻尼器部件的性能!空间分布的优化:主要是为了充分发挥粘性阻尼器的能耗,减少地震作用下结构的反应,如何选择合理有效的位置来布置阻尼器具有重要意义.
在消能减震法的情况下,结构可以在低级地震或风震的作用下获得足够的初始刚度,保持弹性状态;在高层地震或风震的作用下,当结构的横向变形尚未开始扩大时,能耗装置可以在结构前进入非弹性状态,从而避免结构的承重构件进入非弹性状态。本期给大家带来的主要内容是减震设计中的粘阻尼器.粘滞阻尼器的初始识别粘性阻尼器是一种与速度相关的阻尼器!目前,在土木工程领域广泛使用的流体阻尼器的内部结构基本上属于射流型!下图为单杆阻尼器。
例如,杆粘阻尼器的对角支撑、人字支撑和套索支撑利用结构层之间的剪切变形来发挥阻尼器的作用,套索支撑形式可以放大结构层之间的剪切变形,增强阻尼器的能耗;加固层的垂直布置利用结构弯曲变形来发挥阻尼器的作用,通过放大伸臂杠杆可以提高阻尼器的能耗效率(对于放大系统,您可以查询各种文献)粘滞阻尼器的构件设计一般来说,在中国,结构工程师通常对粘性阻尼器持有主义态度(直接确定阻尼系数和阻尼指数,并将其替换为模型直接计算~)。