流体动力学计算:确保所有参数满足设计曲线的要求.比较经验数据:设计阻尼器,参考丰富的数据平台,确保精度.应用粘滞阻尼器:近年来,粘滞阻尼器以其优异的抗风、抗震(振动)能力和经济性在工程结构领域得到了广泛的应用。其应用领域包括:民用建筑:如住宅、写字楼、商场等多层高层建筑和大跨度建筑结构等!生命线工程:如医院、学校、城市功能建筑等工业建筑:如厂房、塔架、设备减振等桥梁:如人行桥、高架桥等。桥梁上使用粘滞阻尼器,建筑中使用粘滞阻尼器粘滞阻尼器的特点:位移指示清晰,便于判断活塞在油缸中的位置.
其工作模式是通过活塞的往复运动,液体通过活塞头上的小孔流动,从而提供阻尼力!除上述单杆粘度阻尼器外,还有粘度阻尼墙和三向气缸粘度阻尼器。前两个阻尼器已广泛应用于建筑结构的振动控制中,而三向气缸粘度阻尼器主要用于管道系统的振动控制。近年来,粘滞阻尼器的研究主要是优化粘滞阻尼器的空间分布,提高粘滞阻尼器部件的性能!空间分布的优化:主要是为了充分发挥粘性阻尼器的能耗,减少地震作用下结构的反应,如何选择合理有效的位置来布置阻尼器具有重要意义!
我公司目前正在开发和生产具有自主知识产权的第三代粘性流体阻尼器。它以低粘度硅油为介质,通过小孔激发原理实现阻尼特性!与以往类型的阻尼器相比,从工作原理、阻尼结构设计、产品寿命和可靠性等方面都发生了革命性的变化,代表了目前粘性阻尼器技术的高水平发展。第三代粘性阻尼器结构结构当外部激励(地震或空气振动)传递到结构时,结构发生变形并驱动阻尼器运动。压差形成在活塞的两端,介质通过阻尼结构,从而产生阻尼力,实现能量转化(机械能转化为热能),从而减少结构振动反应!
事实上,粘性阻尼器的设计是一个非常复杂的过程,大致可以分为四个主要过程:粘性阻尼器的强度计算、阻尼器的热量计算、流体动力学计算和经验数据比较:强度设计:应设计阻尼器内的所有部件!所有部件包括活塞杆、气缸和护套!在设计额定阻尼力的基础上,应考虑一定的安全储备;一般情况下,应考虑2~2的安全系数。5倍,应确保在这种安全储备的张力和压力下,所有部件不得屈服、变形!加热计算分析:在考虑动力密封设置的同时,根据单位时间内阻尼器的能量耗散来计算阻尼器的热量!
专业粘滞阻尼器
例如,杆粘阻尼器的对角支撑、人字支撑和套索支撑利用结构层之间的剪切变形来发挥阻尼器的作用,套索支撑形式可以放大结构层之间的剪切变形,增强阻尼器的能耗;加固层的垂直布置利用结构弯曲变形来发挥阻尼器的作用,通过放大伸臂杠杆可以提高阻尼器的能耗效率(对于放大系统,您可以查询各种文献)粘滞阻尼器的构件设计一般来说,在中国,结构工程师通常对粘性阻尼器持有主义态度(直接确定阻尼系数和阻尼指数,并将其替换为模型直接计算~)。